sklearn_regression#
Source code: sensai/sklearn/sklearn_regression.py
- class SkLearnRandomForestVectorRegressionModel(n_estimators=100, min_samples_leaf=10, random_state=42, **model_args)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
,FeatureImportanceProviderSkLearnRegressionMultipleOneDim
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnLinearRegressionVectorRegressionModel(fit_intercept=True, **model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
,FeatureImportanceProviderSkLearnRegressionMultiDim
- Parameters:
fit_intercept – whether to determine the intercept, i.e. the constant term which is not scaled with an input feature value; set to False if the data is already centred
model_args – see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
- class SkLearnLinearRidgeRegressionVectorRegressionModel(alpha=1.0, fit_intercept=True, solver='auto', max_iter=None, tol=0.001, **model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
,FeatureImportanceProviderSkLearnRegressionMultiDim
Linear least squares with L2 regularisation
- Parameters:
alpha – multiplies the L2 term, controlling regularisation strength
fit_intercept – whether to determine the intercept, i.e. the constant term which is not scaled with an input feature value; set to False if the data is already centred
model_args – see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
- class SkLearnLinearLassoRegressionVectorRegressionModel(alpha=1.0, fit_intercept=True, max_iter=1000, tol=0.0001, **model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
,FeatureImportanceProviderSkLearnRegressionMultiDim
Linear least squares with L1 regularisation, a.k.a. the lasso
- Parameters:
alpha – multiplies the L1 term, controlling regularisation strength
fit_intercept – whether to determine the intercept, i.e. the constant term which is not scaled with an input feature value; set to False if the data is already centred
model_args – see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
- class SkLearnMultiLayerPerceptronVectorRegressionModel(hidden_layer_sizes=(100,), activation: str = 'relu', solver: str = 'adam', batch_size: Union[int, str] = 'auto', random_state: Optional[int] = 42, max_iter: int = 200, early_stopping: bool = False, n_iter_no_change: int = 10, **model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
- Parameters:
hidden_layer_sizes – the sequence of hidden layer sizes
activation – {“identity”, “logistic”, “tanh”, “relu”} the activation function to use for hidden layers (the one used for the output layer is always ‘identity’)
solver – {“adam”, “lbfgs”, “sgd”} the name of the solver to apply
batch_size – the batch size or “auto” for min(200, data set size)
random_state – the random seed for reproducability; use None if it shall not be specifically defined
max_iter – the number of iterations (gradient steps for L-BFGS, epochs for other solvers)
early_stopping – whether to use early stopping (stop training after n_iter_no_change epochs without improvement)
n_iter_no_change – the number of iterations after which to stop early (if early_stopping is enabled)
model_args – additional arguments to pass on to MLPRegressor, see https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
- class SkLearnSVRVectorRegressionModel(**model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnLinearSVRVectorRegressionModel(**model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnGradientBoostingVectorRegressionModel(random_state=42, **model_args)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnKNeighborsVectorRegressionModel(**model_args)[source]#
Bases:
AbstractSkLearnMultiDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnExtraTreesVectorRegressionModel(n_estimators=100, min_samples_leaf=10, random_state=42, **model_args)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnDummyVectorRegressionModel(strategy='mean', constant=None, quantile=None)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- class SkLearnDecisionTreeVectorRegressionModel(random_state=42, **model_args)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
- Parameters:
model_constructor – the sklearn model constructor
model_args – arguments to be passed to the sklearn model constructor
- plot_graphviz_pdf(dot_path, predicted_var_name=None)[source]#
- Parameters:
path – the path to a .dot file that will be created, alongside which a rendered PDF file (with added suffix “.pdf”) will be placed
predicted_var_name – the predicted variable name for which to plot the model (if multiple; None is admissible if there is only one predicted variable)