coordinate_clustering#
Source code: sensai/geoanalytics/geopandas/coordinate_clustering.py
- class CoordinateEuclideanClusterer(clusterer: EuclideanClusterer)[source]#
Bases:
EuclideanClusterer
,GeoDataFrameWrapper
Wrapper around a clustering model. This class adds additional, geospatial-specific features to the provided clusterer
- Parameters:
clusterer – an instance of ClusteringModel
- class Cluster(coordinates: ndarray, identifier: Union[str, int])[source]#
Bases:
Cluster
,GeoDataFrameWrapper
,LoadSaveInterface
Wrapper around a coordinates array
- Parameters:
coordinates –
identifier –
- to_geodf(crs='epsg:3857')[source]#
Export the cluster as a GeoDataFrame of length 1 with the cluster as an instance of MultiPoint and the identifier as index.
- Parameters:
crs – projection. By default pseudo-mercator
- Returns:
GeoDataFrame
- fit(coordinates: Union[ndarray, shapely.geometry.MultiPoint, geopandas.GeoDataFrame, Cluster])[source]#
Fitting to coordinates from a numpy array, a MultiPoint object or a GeoDataFrame with one Point per row
- Parameters:
coordinates –
- Returns:
- to_geodf(condition: Callable[[Cluster], bool] = None, crs='epsg:3857', include_noise=False) geopandas.GeoDataFrame [source]#
GeoDataFrame containing all clusters found by the model. It is a concatenation of GeoDataFrames of individual clusters
- Parameters:
condition – if provided, only clusters fulfilling the condition will be included
crs – projection. By default pseudo-mercator
include_noise –
- Returns:
GeoDataFrame with all clusters indexed by their identifier
- plot(include_noise=False, condition=None, **kwargs)[source]#
Plots the resulting clusters with random coloring
- Parameters:
include_noise – Whether to include the noise cluster
condition – If provided, only clusters fulfilling this condition will be included
kwargs – passed to GeoDataFrame.plot
- Returns:
- class SkLearnCoordinateClustering(clusterer: SkLearnClustererProtocol, noise_label=- 1, min_cluster_size: Optional[int] = None, max_cluster_size: Optional[int] = None)[source]#
Bases:
CoordinateEuclideanClusterer
Wrapper around a sklearn clusterer. This class adds additional features like relabelling and convenient methods for handling geospatial data
- Parameters:
clusterer – a clusterer object compatible the sklearn API
noise_label – label that is associated with the noise cluster or None
min_cluster_size – if not None, clusters below this size will be labeled as noise
max_cluster_size – if not None, clusters above this size will be labeled as noise