sklearn_quantile#
Source code: sensai/sklearn_quantile.py
- class RandomForestQuantileRegressorVectorRegressionModel(confidence: float, random_state=42, **kwargs)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
- Parameters:
q – the default quantile that is used for predictions
kwargs – keyword arguments to pass on to RandomForestQuantileRegressor
- predict_confidence_intervals(x: DataFrame, var_name: Optional[str] = None)[source]#
- Parameters:
x – the input data
var_name – the predicted variable name; may be None if there is only one predicted variable
- Returns:
an array of shape [2, N], where the first dimension contains the confidence interval’s lower bounds and the second its upper bounds
- class QuantileRegressionMetric(name: Optional[str] = None, bounds: Optional[Tuple[float, float]] = None)[source]#
Bases:
RegressionMetric
,ABC
- Parameters:
name – the name of the metric; if None use the class’ name attribute
bounds – the minimum and maximum values the metric can take on (or None if the bounds are not specified)
- static compute_confidence_intervals(model: VectorRegressionModel, io_data: InputOutputData = None) ndarray [source]#
- name: str#
- class QuantileRegressionMetricAccuracyInConfidenceInterval(name: Optional[str] = None, bounds: Optional[Tuple[float, float]] = None)[source]#
Bases:
QuantileRegressionMetric
Metric reflecting the accuracy of the confidence interval, i.e. the relative frequency of predictions where the confidence interval contains the ground true value
- Parameters:
name – the name of the metric; if None use the class’ name attribute
bounds – the minimum and maximum values the metric can take on (or None if the bounds are not specified)
- name: str = 'AccuracyInCI'#
- classmethod compute_value(y_true: ndarray, y_predicted: ndarray, model: Optional[VectorRegressionModel] = None, io_data: Optional[InputOutputData] = None)[source]#
- class QuantileRegressionMetricConfidenceIntervalMeanSize(name: Optional[str] = None, bounds: Optional[Tuple[float, float]] = None)[source]#
Bases:
QuantileRegressionMetric
Metric for the mean size of the confidence interval
- Parameters:
name – the name of the metric; if None use the class’ name attribute
bounds – the minimum and maximum values the metric can take on (or None if the bounds are not specified)
- name: str = 'MeanSizeCI'#
- classmethod compute_value(y_true: ndarray, y_predicted: ndarray, model: Optional[VectorRegressionModel] = None, io_data: Optional[InputOutputData] = None)[source]#
- class QuantileRegressionMetricConfidenceIntervalMedianSize(name: Optional[str] = None, bounds: Optional[Tuple[float, float]] = None)[source]#
Bases:
QuantileRegressionMetric
Metric for the median size of the confidence interval
- Parameters:
name – the name of the metric; if None use the class’ name attribute
bounds – the minimum and maximum values the metric can take on (or None if the bounds are not specified)
- name: str = 'MedianSizeCI'#
- classmethod compute_value(y_true: ndarray, y_predicted: ndarray, model: Optional[VectorRegressionModel] = None, io_data: Optional[InputOutputData] = None)[source]#
- class QuantileRegressionMetricRelFreqMaxSizeConfidenceInterval(max_size: float)[source]#
Bases:
QuantileRegressionMetric
Relative frequency of confidence interval having the given maximum size
- Parameters:
name – the name of the metric; if None use the class’ name attribute
bounds – the minimum and maximum values the metric can take on (or None if the bounds are not specified)
- compute_value(y_true: ndarray, y_predicted: ndarray, model: Optional[VectorRegressionModel] = None, io_data: Optional[InputOutputData] = None)[source]#
- name: str#