eval_stats_base#
Source code: sensai/evaluation/eval_stats/eval_stats_base.py
- class EvalStats(metrics: List[TMetric], additional_metrics: Optional[List[TMetric]] = None)[source]#
Bases:
Generic
[TMetric
],ToStringMixin
- class Metric(name: Optional[str] = None, bounds: Optional[Tuple[float, float]] = None)[source]#
Bases:
Generic
[TEvalStats
],ABC
- Parameters:
name – the name of the metric; if None use the class’ name attribute
bounds – the minimum and maximum values the metric can take on (or None if the bounds are not specified)
- name: str#
- get_paired_metrics() List[TMetric] [source]#
Gets a list of metrics that should be considered together with this metric (e.g. for paired visualisations/plots). The direction of the pairing should be such that if this metric is “x”, the other is “y” for x-y type visualisations.
- Returns:
a list of metrics
- class EvalStatsCollection(eval_stats_list: List[TEvalStats])[source]#
Bases:
Generic
[TEvalStats
,TMetric
],ABC
- plot_distribution(metric_name: str, subtitle: Optional[str] = None, bins=None, kde=False, cdf=False, cdf_complementary=False, stat='proportion', **kwargs) Figure [source]#
Plots the distribution of a metric as a histogram
- Parameters:
metric_name – name of the metric for which to plot the distribution (histogram) across evaluations
subtitle – the subtitle to add, if any
bins – the histogram bins (number of bins or boundaries); metrics bounds will be used to define the x limits. If None, use ‘auto’ bins
kde – whether to add a kernel density estimator plot
cdf – whether to add the cumulative distribution function (cdf)
cdf_complementary – whether to plot, if
cdf
is True, the complementary cdf instead of the regular cdfstat – the statistic to compute for each bin (‘percent’, ‘probability’=’proportion’, ‘count’, ‘frequency’ or ‘density’), y-axis value
kwargs – additional parameters to pass to seaborn.histplot (see https://seaborn.pydata.org/generated/seaborn.histplot.html)
- Returns:
the plot
- class PredictionEvalStats(y_predicted: Optional[Union[ndarray, Series, DataFrame, list]], y_true: Optional[Union[ndarray, Series, DataFrame, list]], metrics: List[TMetric], additional_metrics: Optional[List[TMetric]] = None, weights: Optional[Union[ndarray, Series, list]] = None)[source]#
Bases:
EvalStats
[TMetric
],ABC
Collects data for the evaluation of predicted values (including multi-dimensional predictions) and computes corresponding metrics
- Parameters:
y_predicted – sequence of predicted values, or, in case of multi-dimensional predictions, either a data frame with one column per dimension or a nested sequence of values
y_true – sequence of ground truth labels of same shape as y_predicted
metrics – list of metrics to be computed on the provided data
additional_metrics – the metrics to additionally compute. This should only be provided if metrics is None
weights – weights for each data point contained in y_predicted and y_true
- add(y_predicted, y_true, weight: Optional[float] = None) None [source]#
Adds a single pair of values to the evaluation
- Parameters:
y_predicted – the value predicted by the model
y_true – the true value
- add_all(y_predicted: Union[ndarray, Series, DataFrame, list], y_true: Union[ndarray, Series, DataFrame, list], weights: Optional[Union[ndarray, Series, list]] = None) None [source]#
- Parameters:
y_predicted – sequence of predicted values, or, in case of multi-dimensional predictions, either a data frame with one column per dimension or a nested sequence of values
y_true – sequence of ground truth labels of same shape as y_predicted
weights – optional weights of data points
- mean_stats(eval_stats_list: Sequence[EvalStats]) Dict[str, float] [source]#
For a list of EvalStats objects compute the mean values of all metrics in a dictionary. Assumes that all provided EvalStats have the same metrics
- class EvalStatsPlot(*args, **kwds)[source]#
Bases:
Generic
[TEvalStats
],ABC