xgboost#
Source code: sensai/xgboost.py
- is_xgboost_version_at_least(major: int, minor: Optional[int] = None, patch: Optional[int] = None)[source]#
- class XGBGradientBoostedVectorRegressionModel(random_state=42, early_stopping_rounds: Optional[int] = None, early_stopping_data_splitter: Optional[DataSplitter] = None, **model_args)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
,FeatureImportanceProviderSkLearnRegressionMultipleOneDim
XGBoost’s regression model using gradient boosted trees
- Parameters:
model_args – See https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor
- class XGBRandomForestVectorRegressionModel(random_state=42, **model_args)[source]#
Bases:
AbstractSkLearnMultipleOneDimVectorRegressionModel
,FeatureImportanceProviderSkLearnRegressionMultipleOneDim
XGBoost’s random forest regression model
- Parameters:
model_args – See https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRFRegressor
- class XGBGradientBoostedVectorClassificationModel(random_state=42, use_balanced_class_weights=False, **model_args)[source]#
Bases:
AbstractSkLearnVectorClassificationModel
,FeatureImportanceProviderSkLearnClassification
XGBoost’s classification model using gradient boosted trees
- Parameters:
model_args – See https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier
- class XGBRandomForestVectorClassificationModel(random_state=42, use_balanced_class_weights=False, **model_args)[source]#
Bases:
AbstractSkLearnVectorClassificationModel
,FeatureImportanceProviderSkLearnClassification
XGBoost’s random forest classification model
- Parameters:
model_args – See https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRFClassifier