Source code for sensai.sklearn.sklearn_regression

import logging
from typing import Union, Optional

import sklearn.ensemble
import sklearn.linear_model
import sklearn.neighbors
import sklearn.neural_network
import sklearn.svm
from matplotlib import pyplot as plt

from .sklearn_base import AbstractSkLearnMultipleOneDimVectorRegressionModel, AbstractSkLearnMultiDimVectorRegressionModel, \
    FeatureImportanceProviderSkLearnRegressionMultipleOneDim, FeatureImportanceProviderSkLearnRegressionMultiDim

log = logging.getLogger(__name__)


[docs]class SkLearnRandomForestVectorRegressionModel(AbstractSkLearnMultipleOneDimVectorRegressionModel, FeatureImportanceProviderSkLearnRegressionMultipleOneDim): def __init__(self, n_estimators=100, min_samples_leaf=10, random_state=42, **model_args): super().__init__(sklearn.ensemble.RandomForestRegressor, n_estimators=n_estimators, min_samples_leaf=min_samples_leaf, random_state=random_state, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnLinearRegressionVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel, FeatureImportanceProviderSkLearnRegressionMultiDim): def __init__(self, fit_intercept=True, **model_args): """ :param fit_intercept: whether to determine the intercept, i.e. the constant term which is not scaled with an input feature value; set to False if the data is already centred :param model_args: see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html """ super().__init__(sklearn.linear_model.LinearRegression, fit_intercept=fit_intercept, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnLinearRidgeRegressionVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel, FeatureImportanceProviderSkLearnRegressionMultiDim): """ Linear least squares with L2 regularisation """ def __init__(self, alpha=1.0, fit_intercept=True, solver="auto", max_iter=None, tol=1e-3, **model_args): """ :param alpha: multiplies the L2 term, controlling regularisation strength :param fit_intercept: whether to determine the intercept, i.e. the constant term which is not scaled with an input feature value; set to False if the data is already centred :param model_args: see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge """ super().__init__(sklearn.linear_model.Ridge, alpha=alpha, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, solver=solver, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnLinearLassoRegressionVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel, FeatureImportanceProviderSkLearnRegressionMultiDim): """ Linear least squares with L1 regularisation, a.k.a. the lasso """ def __init__(self, alpha=1.0, fit_intercept=True, max_iter=1000, tol=0.0001, **model_args): """ :param alpha: multiplies the L1 term, controlling regularisation strength :param fit_intercept: whether to determine the intercept, i.e. the constant term which is not scaled with an input feature value; set to False if the data is already centred :param model_args: see https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso """ super().__init__(sklearn.linear_model.Lasso, alpha=alpha, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnMultiLayerPerceptronVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel): def __init__(self, hidden_layer_sizes=(100,), activation: str = "relu", solver: str = "adam", batch_size: Union[int, str] = "auto", random_state: Optional[int] = 42, max_iter: int = 200, early_stopping: bool = False, n_iter_no_change: int = 10, **model_args): """ :param hidden_layer_sizes: the sequence of hidden layer sizes :param activation: {"identity", "logistic", "tanh", "relu"} the activation function to use for hidden layers (the one used for the output layer is always 'identity') :param solver: {"adam", "lbfgs", "sgd"} the name of the solver to apply :param batch_size: the batch size or "auto" for min(200, data set size) :param random_state: the random seed for reproducability; use None if it shall not be specifically defined :param max_iter: the number of iterations (gradient steps for L-BFGS, epochs for other solvers) :param early_stopping: whether to use early stopping (stop training after n_iter_no_change epochs without improvement) :param n_iter_no_change: the number of iterations after which to stop early (if early_stopping is enabled) :param model_args: additional arguments to pass on to MLPRegressor, see https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html """ super().__init__(sklearn.neural_network.MLPRegressor, random_state=random_state, hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, batch_size=batch_size, max_iter=max_iter, early_stopping=early_stopping, n_iter_no_change=n_iter_no_change, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return False
[docs]class SkLearnSVRVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel): def __init__(self, **model_args): super().__init__(sklearn.svm.SVR, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnLinearSVRVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel): def __init__(self, **model_args): super().__init__(sklearn.svm.LinearSVR, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnGradientBoostingVectorRegressionModel(AbstractSkLearnMultipleOneDimVectorRegressionModel): def __init__(self, random_state=42, **model_args): super().__init__(sklearn.ensemble.GradientBoostingRegressor, random_state=random_state, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnKNeighborsVectorRegressionModel(AbstractSkLearnMultiDimVectorRegressionModel): def __init__(self, **model_args): super().__init__(sklearn.neighbors.KNeighborsRegressor, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return False
[docs]class SkLearnExtraTreesVectorRegressionModel(AbstractSkLearnMultipleOneDimVectorRegressionModel): def __init__(self, n_estimators=100, min_samples_leaf=10, random_state=42, **model_args): super().__init__(sklearn.ensemble.ExtraTreesRegressor, n_estimators=n_estimators, min_samples_leaf=min_samples_leaf, random_state=random_state, **model_args)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnDummyVectorRegressionModel(AbstractSkLearnMultipleOneDimVectorRegressionModel): def __init__(self, strategy='mean', constant=None, quantile=None): super().__init__(sklearn.dummy.DummyRegressor, strategy=strategy, constant=constant, quantile=quantile)
[docs] def is_sample_weight_supported(self) -> bool: return True
[docs]class SkLearnDecisionTreeVectorRegressionModel(AbstractSkLearnMultipleOneDimVectorRegressionModel): def __init__(self, random_state=42, **model_args): super().__init__(sklearn.tree.DecisionTreeRegressor, random_state=random_state, **model_args)
[docs] def plot(self, predicted_var_name=None, figsize=None) -> plt.Figure: model = self.get_sklearn_model(predicted_var_name) fig = plt.figure(figsize=figsize) sklearn.tree.plot_tree(model, feature_names=self.get_model_input_variable_names()) return fig
[docs] def plot_graphviz_pdf(self, dot_path, predicted_var_name=None): """ :param path: the path to a .dot file that will be created, alongside which a rendered PDF file (with added suffix ".pdf") will be placed :param predicted_var_name: the predicted variable name for which to plot the model (if multiple; None is admissible if there is only one predicted variable) """ import graphviz dot = sklearn.tree.export_graphviz(self.get_sklearn_model(predicted_var_name), out_file=None, feature_names=self.get_model_input_variable_names(), filled=True) graphviz.Source(dot).render(dot_path)
[docs] def is_sample_weight_supported(self) -> bool: return True