"""
Utility functions and classes for geographic coordinates
"""
import math
from typing import Tuple, Iterable
import numpy as np
import pandas as pd
from ..util.string import ToStringMixin
EARTH_RADIUS = 6371000
EARTH_CIRCUMFERENCE = 2 * math.pi * EARTH_RADIUS
LATITUDE_PER_METRE = 360.0 / EARTH_CIRCUMFERENCE
[docs]def longitude_per_m(latitude):
return LATITUDE_PER_METRE / math.cos(math.radians(latitude))
[docs]def latitude_per_m():
return LATITUDE_PER_METRE
[docs]def approximate_squared_distance(p1: Tuple[float, float], p2: Tuple[float, float]):
"""
:param p1: a tuple (latitude, longitude)
:param p2: a tuple (latitude, longitude)
:return: the approximate squared distance (in m²) between p1 and p2
"""
lat_per_m = latitude_per_m()
p1lat, p1lon = p1
p2lat, p2lon = p2
lon_per_m = longitude_per_m((p1lat + p2lat) / 2)
dx = (p2lon - p1lon) / lon_per_m
dy = (p2lat - p1lat) / lat_per_m
return dx * dx + dy * dy
[docs]def closest_point_on_segment(search_pos: Tuple[float, float], segPoint1: Tuple[float, float], segPoint2: Tuple[float, float]):
"""
Gets the point on the line segment connecting segPoint1 and segPoint2 that is closest to searchPos
:param search_pos: the position for which to search for the closest point on the line segment
:param segPoint1: the first point defining the line segment on which to search
:param segPoint2: the second point defining the line segment on which to search
:return: the closest point, which is on the line connecting segPoint1 and segPoint2 (and may be one of the two points)
"""
seg1lat, seg1lon = segPoint1
seg2lat, seg2lon = segPoint2
srchlat, srchlon = search_pos
lat_per_m = latitude_per_m()
lon_per_m = longitude_per_m(srchlat)
sp1x = (seg1lon - srchlon) / lon_per_m
sp1y = (seg1lat - srchlat) / lat_per_m
sp2x = (seg2lon - srchlon) / lon_per_m
sp2y = (seg2lat - srchlat) / lat_per_m
vx = sp2x - sp1x
vy = sp2y - sp1y
c1 = -vx * sp1x - vy * sp1y
if c1 <= 0:
return segPoint1
c2 = vx * vx + vy * vy
if c2 <= c1:
return segPoint2
b = 0 if c2 == 0 else c1 / c2
lon = seg1lon + b * vx * lon_per_m
lat = seg1lat + b * vy * lat_per_m
return [lat, lon]
[docs]def orientation(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""
Gets the orientation angle for the vector from p1 to p2
:param p1: a (lat, lon) pair
:param p2: a (lat, lon) pair
:return: the orientation angle in rad
"""
p1_lat, p1_lon = p1
p2_lat, p2_lon = p2
center_lat = (p1_lat + p2_lat) / 2
dx = (p2_lon - p1_lon) / longitude_per_m(center_lat)
dy = (p2_lat - p1_lat) / latitude_per_m()
return math.atan2(dy, dx)
[docs]def abs_angle_difference(a1: float, a2: float) -> float:
"""
Computes the absolute angle difference in ]-pi, pi] between two angles
:param a1: an angle in rad
:param a2: an angle in rad
:return: the difference in rad
"""
d = a1 - a2
while d > math.pi:
d -= 2*math.pi
while d <= -math.pi:
d += 2*math.pi
return abs(d)
[docs]def closest_point_on_polyline(search_pos, polyline, search_orientation_angle=None, max_angle_difference=0) \
-> Tuple[Tuple[float, float], float, int]:
"""
Gets the point on the given polyline that is closest to the given search position along with the
distance (in metres) to the polyline
:param search_pos: a (lat, lon) pair indicating the position for which to find the closest math on the polyline
:param polyline: list of (lat, lon) pairs that make up the polyline on which to search
:param search_orientation_angle: if not None, defines the orientation with which to compute angle differences
(if maxAngleDifference > 0)
:param max_angle_difference: the maximum absolute angle difference (in rad) that is admissible (between the orientation of the
respective line segment and the orientation given in searchOrientationAngle)
:return: a tuple (opt_point, opt_dist, opt_segment_start_idx) where
opt_point is the closest point (with admissible orientation - or None if there is none),
opt_dist is the distance from the polyline to the closest point,
opt_segment_start_idx is the index of the first point of the segment on the polyline for which the closest point was found
"""
if len(polyline) < 2:
raise Exception("Polyline must consist of at least two points")
opt_segment_start_idx = None
opt_point = None
opt_sq_dist = None
for i in range(len(polyline)-1):
if max_angle_difference > 0:
orientation_angle = orientation(polyline[i], polyline[i+1])
ang_diff = abs_angle_difference(orientation_angle, search_orientation_angle)
if ang_diff > max_angle_difference:
continue
opt_seg_point = closest_point_on_segment(search_pos, polyline[i], polyline[i + 1])
sq_dist = approximate_squared_distance(search_pos, opt_seg_point)
if opt_sq_dist is None or sq_dist < opt_sq_dist:
opt_point = opt_seg_point
opt_sq_dist = sq_dist
opt_segment_start_idx = i
return opt_point, math.sqrt(opt_sq_dist), opt_segment_start_idx
[docs]class GeoCoord(ToStringMixin):
"""
Represents geographic coordinates (WGS84)
"""
def __init__(self, lat: float, lon: float):
self.lat = lat
self.lon = lon
[docs] def latlon(self):
return self.lat, self.lon
[docs] def distance_to(self, gps_position: 'GeoCoord'):
return math.sqrt(self.squared_distance_to(gps_position))
[docs] def squared_distance_to(self, gps_position: 'GeoCoord'):
return approximate_squared_distance(self.latlon(), gps_position.latlon())
[docs] def local_coords(self, lcs):
return lcs.get_local_coords(self.lat, self.lon)
[docs] @classmethod
def mean_coord(cls, geo_coords: Iterable["GeoCoord"]):
mean_lat = np.mean([c.lat for c in geo_coords])
mean_lon = np.mean([c.lon for c in geo_coords])
# noinspection PyTypeChecker
return GeoCoord(mean_lat, mean_lon)
[docs]class GpsTracePoint(GeoCoord):
def __init__(self, lat, lon, time: pd.Timestamp):
super().__init__(lat, lon)
self.time = time
[docs]class GeoRect:
def __init__(self, min_lat: float, min_lon: float, max_lat: float, max_lon: float):
if max_lat < min_lat or max_lon < min_lon:
raise ValueError()
self.minLat = min_lat
self.minLon = min_lon
self.maxLat = max_lat
self.maxLon = max_lon
[docs] @staticmethod
def from_circle(centre_lat, centre_lon, radius_m):
"""Creates the bounding rectangle for the given circular area"""
from .local_coords import LocalCoordinateSystem
lcs = LocalCoordinateSystem(centre_lat, centre_lon)
min_lat, min_lon = lcs.get_lat_lon(-radius_m, -radius_m)
max_lat, max_lon = lcs.get_lat_lon(radius_m, radius_m)
return GeoRect(min_lat, min_lon, max_lat, max_lon)