Coverage for src/sensai/torch/torch_models/mlp/mlp_models.py: 100%
42 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
1import logging
2from typing import Callable, Optional, Sequence, Union
4import torch.nn.functional
6from .mlp_modules import MultiLayerPerceptron
7from ...torch_base import VectorTorchModel, TorchVectorRegressionModel, TorchVectorClassificationModel, ClassificationOutputMode
8from ...torch_enums import ActivationFunction
9from ...torch_opt import NNOptimiserParams
10from .... import NormalisationMode
12log: logging.Logger = logging.getLogger(__name__)
15class MultiLayerPerceptronTorchModel(VectorTorchModel):
16 def __init__(self,
17 cuda: bool,
18 hidden_dims: Sequence[int],
19 hid_activation_function: Callable[[torch.Tensor], torch.Tensor],
20 output_activation_function: Optional[Callable[[torch.Tensor], torch.Tensor]],
21 p_dropout: Optional[float] = None,
22 input_dim: Optional[int] = None) -> None:
23 """
24 :param cuda: whether to enable CUDA
25 :param hidden_dims: the sequence of hidden layer dimensions
26 :param hid_activation_function: the output activation function for hidden layers
27 :param output_activation_function: the output activation function
28 :param p_dropout: the dropout probability for training
29 :param input_dim: the input dimension; if None, use dimensions determined by the input data (number of columns in data frame)
30 """
31 super().__init__(cuda=cuda)
32 self.hidActivationFunction = ActivationFunction.torch_function_from_any(hid_activation_function)
33 self.outputActivationFunction = ActivationFunction.torch_function_from_any(output_activation_function)
34 self.hiddenDims = hidden_dims
35 self.pDropout = p_dropout
36 self.overrideInputDim = input_dim
38 def create_torch_module_for_dims(self, input_dim: int, output_dim: int) -> torch.nn.Module:
39 return MultiLayerPerceptron(input_dim if self.overrideInputDim is None else self.overrideInputDim, output_dim, self.hiddenDims,
40 hid_activation_fn=self.hidActivationFunction, output_activation_fn=self.outputActivationFunction,
41 p_dropout=self.pDropout)
44class MultiLayerPerceptronVectorRegressionModel(TorchVectorRegressionModel):
45 def __init__(self,
46 hidden_dims: Sequence[int] = (5, 5),
47 hid_activation_function: Callable[[torch.Tensor], torch.Tensor] = torch.sigmoid,
48 output_activation_function: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
49 input_dim: Optional[int] = None,
50 normalisation_mode: NormalisationMode = NormalisationMode.NONE,
51 cuda: bool = True,
52 p_dropout: Optional[float] = None,
53 nn_optimiser_params: Optional[NNOptimiserParams] = None) -> None:
54 """
55 :param hidden_dims: sequence containing the number of neurons to use in hidden layers
56 :param hid_activation_function: the activation function (torch.nn.functional.* or torch.*) to use for all hidden layers
57 :param output_activation_function: the output activation function (torch.nn.functional.* or torch.* or None)
58 :param input_dim: the input dimension; if None, use dimensions determined by the input data (number of columns in data frame)
59 :param normalisation_mode: the normalisation mode to apply to input and output data
60 :param cuda: whether to use CUDA (GPU acceleration)
61 :param p_dropout: the probability with which to apply dropouts after each hidden layer
62 :param nn_optimiser_params: parameters for NNOptimiser; if None, use default (or what is specified in nnOptimiserDictParams)
63 """
64 self.hidden_dims = hidden_dims
65 self.hid_activation_function = hid_activation_function
66 self.output_activation_function = output_activation_function
67 self.input_dim = input_dim
68 self.cuda = cuda
69 self.p_dropout = p_dropout
70 super().__init__(self._create_torch_model, normalisation_mode, nn_optimiser_params)
72 def _create_torch_model(self) -> MultiLayerPerceptronTorchModel:
73 return MultiLayerPerceptronTorchModel(self.cuda, self.hidden_dims, self.hid_activation_function, self.output_activation_function,
74 p_dropout=self.p_dropout, input_dim=self.input_dim)
77class MultiLayerPerceptronVectorClassificationModel(TorchVectorClassificationModel):
78 def __init__(self,
79 hidden_dims: Sequence[int] = (5, 5),
80 hid_activation_function: Callable[[torch.Tensor], torch.Tensor] = torch.sigmoid,
81 output_activation_function: Optional[Union[Callable[[torch.Tensor], torch.Tensor], str, ActivationFunction]] =
82 ActivationFunction.LOG_SOFTMAX,
83 input_dim: Optional[int] = None,
84 normalisation_mode: NormalisationMode = NormalisationMode.NONE, cuda: bool = True,
85 p_dropout: Optional[float] = None,
86 nn_optimiser_params: Optional[NNOptimiserParams] = None) -> None:
87 """
88 :param hidden_dims: sequence containing the number of neurons to use in hidden layers
89 :param hid_activation_function: the activation function (torch.nn.functional.* or torch.*) to use for all hidden layers
90 :param output_activation_function: the output activation function (function from torch.nn.functional.*, function name, enum instance or None)
91 :param input_dim: the input dimension; if None, use dimensions determined by the input data (number of columns in data frame)
92 :param normalisation_mode: the normalisation mode to apply to input and output data
93 :param cuda: whether to use CUDA (GPU acceleration)
94 :param p_dropout: the probability with which to apply dropouts after each hidden layer
95 :param nn_optimiser_params: parameters for NNOptimiser; if None, use default
96 """
97 self.hidden_dims = hidden_dims
98 self.hid_activation_function = hid_activation_function
99 self.output_activation_function = output_activation_function
100 self.input_dim = input_dim
101 self.cuda = cuda
102 self.p_dropout = p_dropout
103 output_mode = ClassificationOutputMode.for_activation_fn(ActivationFunction.torch_function_from_any(output_activation_function))
104 super().__init__(output_mode,
105 self._create_torch_model,
106 normalisation_mode,
107 nn_optimiser_params)
109 def _create_torch_model(self) -> MultiLayerPerceptronTorchModel:
110 return MultiLayerPerceptronTorchModel(self.cuda, self.hidden_dims, self.hid_activation_function, self.output_activation_function,
111 p_dropout=self.p_dropout, input_dim=self.input_dim)