Coverage for src/sensai/evaluation/crossval.py: 40%

156 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-11-29 18:29 +0000

1import copy 

2import functools 

3import logging 

4from abc import ABC, abstractmethod 

5from typing import Tuple, Any, Generator, Generic, TypeVar, List, Union, Sequence, Optional 

6 

7import numpy as np 

8 

9from .eval_stats.eval_stats_base import PredictionEvalStats, EvalStatsCollection 

10from .eval_stats.eval_stats_classification import ClassificationEvalStats, ClassificationEvalStatsCollection 

11from .eval_stats.eval_stats_regression import RegressionEvalStats, RegressionEvalStatsCollection 

12from .evaluator import VectorRegressionModelEvaluationData, VectorClassificationModelEvaluationData, \ 

13 VectorModelEvaluationData, VectorClassificationModelEvaluator, VectorRegressionModelEvaluator, \ 

14 MetricsDictProvider, VectorModelEvaluator, ClassificationEvaluatorParams, \ 

15 RegressionEvaluatorParams, MetricsDictProviderFromFunction 

16from ..data import InputOutputData, DataSplitterFractional 

17from ..tracking.tracking_base import TrackingContext 

18from ..util.typing import PandasNamedTuple 

19from ..vector_model import VectorClassificationModel, VectorRegressionModel, VectorModel 

20 

21log = logging.getLogger(__name__) 

22 

23TModel = TypeVar("TModel", bound=VectorModel) 

24TEvalStats = TypeVar("TEvalStats", bound=PredictionEvalStats) 

25TEvalStatsCollection = TypeVar("TEvalStatsCollection", bound=EvalStatsCollection) 

26TEvalData = TypeVar("TEvalData", bound=VectorModelEvaluationData) 

27 

28 

29class VectorModelCrossValidationData(ABC, Generic[TModel, TEvalData, TEvalStats, TEvalStatsCollection]): 

30 def __init__(self, trained_models: Optional[List[TModel]], eval_data_list: List[TEvalData], predicted_var_names: List[str], 

31 test_indices_list=None): 

32 self.predicted_var_names = predicted_var_names 

33 self.trained_models = trained_models 

34 self.eval_data_list = eval_data_list 

35 self.test_indices_list = test_indices_list 

36 

37 @property 

38 def model_name(self): 

39 return self.eval_data_list[0].model_name 

40 

41 @abstractmethod 

42 def _create_eval_stats_collection(self, l: List[TEvalStats]) -> TEvalStatsCollection: 

43 pass 

44 

45 def get_eval_stats_collection(self, predicted_var_name=None) -> TEvalStatsCollection: 

46 if predicted_var_name is None: 

47 if len(self.predicted_var_names) != 1: 

48 raise Exception(f"Must provide name of predicted variable name, as multiple variables were predicted: " 

49 f"{self.predicted_var_names}") 

50 else: 

51 predicted_var_name = self.predicted_var_names[0] 

52 eval_stats_list = [evalData.get_eval_stats(predicted_var_name) for evalData in self.eval_data_list] 

53 return self._create_eval_stats_collection(eval_stats_list) 

54 

55 def iter_input_output_ground_truth_tuples(self, predicted_var_name=None) -> Generator[Tuple[PandasNamedTuple, Any, Any], None, None]: 

56 for evalData in self.eval_data_list: 

57 eval_stats = evalData.get_eval_stats(predicted_var_name) 

58 for i, namedTuple in enumerate(evalData.input_data.itertuples()): 

59 yield namedTuple, eval_stats.y_predicted[i], eval_stats.y_true[i] 

60 

61 def track_metrics(self, tracking_context: TrackingContext): 

62 is_multivar = len(self.predicted_var_names) > 1 

63 for predicted_var_name in self.predicted_var_names: 

64 eval_stats_collection = self.get_eval_stats_collection(predicted_var_name=predicted_var_name) 

65 metrics_dict = eval_stats_collection.agg_metrics_dict() 

66 tracking_context.track_metrics(metrics_dict, predicted_var_name=predicted_var_name if is_multivar else None) 

67 

68 

69TCrossValData = TypeVar("TCrossValData", bound=VectorModelCrossValidationData) 

70 

71 

72class CrossValidationSplitter(ABC): 

73 """ 

74 Defines a mechanism with which to generate data splits for cross-validation 

75 """ 

76 @abstractmethod 

77 def create_folds(self, data: InputOutputData, num_folds: int) -> List[Tuple[Sequence[int], Sequence[int]]]: 

78 """ 

79 :param data: the data from which to obtain the folds 

80 :param num_folds: the number of splits/folds 

81 :return: a list containing numFolds tuples (t, e) where t and e are sequences of data point indices to use for training 

82 and evaluation respectively 

83 """ 

84 pass 

85 

86 

87class CrossValidationSplitterDefault(CrossValidationSplitter): 

88 def __init__(self, shuffle=True, random_seed=42): 

89 self.shuffle = shuffle 

90 self.randomSeed = random_seed 

91 

92 def create_folds(self, data: InputOutputData, num_splits: int) -> List[Tuple[Sequence[int], Sequence[int]]]: 

93 num_data_points = len(data) 

94 num_test_points = num_data_points // num_splits 

95 if self.shuffle: 

96 indices = np.random.RandomState(self.randomSeed).permutation(num_data_points) 

97 else: 

98 indices = list(range(num_data_points)) 

99 result = [] 

100 for i in range(num_splits): 

101 test_start_idx = i * num_test_points 

102 test_end_idx = test_start_idx + num_test_points 

103 test_indices = indices[test_start_idx:test_end_idx] 

104 train_indices = np.concatenate((indices[:test_start_idx], indices[test_end_idx:])) 

105 result.append((train_indices, test_indices)) 

106 return result 

107 

108 

109class CrossValidationSplitterNested(CrossValidationSplitter): 

110 """ 

111 A data splitter for nested cross-validation (which is useful, in particular, for time series prediction problems) 

112 """ 

113 def __init__(self, test_fraction: float): 

114 self.test_fraction = test_fraction 

115 

116 def create_folds(self, data: InputOutputData, num_folds: int) -> List[Tuple[Sequence[int], Sequence[int]]]: 

117 fractional_splitter = DataSplitterFractional(1-self.test_fraction, shuffle=False) 

118 result = [] 

119 for i in range(num_folds): 

120 indices, (a, b) = fractional_splitter.split_with_indices(data) 

121 result.append(indices) 

122 data = a 

123 return result 

124 

125 

126class VectorModelCrossValidatorParams: 

127 def __init__(self, 

128 folds: int = 5, 

129 splitter: CrossValidationSplitter = None, 

130 return_trained_models=False, 

131 evaluator_params: Union[RegressionEvaluatorParams, ClassificationEvaluatorParams] = None, 

132 default_splitter_random_seed=42, 

133 default_splitter_shuffle=True): 

134 """ 

135 :param folds: the number of folds 

136 :param splitter: the splitter to use in order to generate the folds; if None, use default split (using parameters for random seed 

137 and shuffling below) 

138 :param return_trained_models: whether to create a copy of the model for each fold and return each of the models 

139 (requires that models can be deep-copied); if False, the model that is passed to evalModel is fitted several times 

140 :param evaluator_params: the model evaluator parameters 

141 :param default_splitter_random_seed: [if splitter is None] the random seed to use for splits 

142 :param default_splitter_shuffle: [if splitter is None] whether to shuffle the data (using randomSeed) before creating the folds 

143 """ 

144 self.folds = folds 

145 self.evaluatorParams = evaluator_params 

146 self.returnTrainedModels = return_trained_models 

147 if splitter is None: 

148 splitter = CrossValidationSplitterDefault(shuffle=default_splitter_shuffle, random_seed=default_splitter_random_seed) 

149 self.splitter = splitter 

150 

151 

152class VectorModelCrossValidator(MetricsDictProvider, Generic[TCrossValData], ABC): 

153 def __init__(self, data: InputOutputData, params: Union[VectorModelCrossValidatorParams]): 

154 """ 

155 :param data: the data set 

156 :param params: parameters 

157 """ 

158 self.params = params 

159 self.modelEvaluators: List[VectorModelEvaluator] = [] 

160 for trainIndices, testIndices in self.params.splitter.create_folds(data, self.params.folds): 

161 self.modelEvaluators.append(self._create_model_evaluator(data.filter_indices(trainIndices), data.filter_indices(testIndices))) 

162 

163 @staticmethod 

164 def for_model(model: VectorModel, data: InputOutputData, params: VectorModelCrossValidatorParams) \ 

165 -> Union["VectorClassificationModelCrossValidator", "VectorRegressionModelCrossValidator"]: 

166 if model.is_regression_model(): 

167 return VectorRegressionModelCrossValidator(data, params) 

168 else: 

169 return VectorClassificationModelCrossValidator(data, params) 

170 

171 @abstractmethod 

172 def _create_model_evaluator(self, training_data: InputOutputData, test_data: InputOutputData) -> VectorModelEvaluator: 

173 pass 

174 

175 @abstractmethod 

176 def _create_result_data(self, trained_models, eval_data_list, test_indices_list, predicted_var_names) -> TCrossValData: 

177 pass 

178 

179 def eval_model(self, model: VectorModel, track: bool = True): 

180 """ 

181 :param model: the model to evaluate 

182 :param track: whether tracking shall be enabled for the case where a tracked experiment is set on this object 

183 :return: cross-validation results 

184 """ 

185 trained_models = [] if self.params.returnTrainedModels else None 

186 eval_data_list = [] 

187 test_indices_list = [] 

188 predicted_var_names = None 

189 with self.begin_optional_tracking_context_for_model(model, track=track) as tracking_context: 

190 for i, evaluator in enumerate(self.modelEvaluators, start=1): 

191 evaluator: VectorModelEvaluator 

192 log.info(f"Training and evaluating model with fold {i}/{len(self.modelEvaluators)} ...") 

193 model_to_fit: VectorModel = copy.deepcopy(model) if self.params.returnTrainedModels else model 

194 evaluator.fit_model(model_to_fit) 

195 eval_data = evaluator.eval_model(model_to_fit) 

196 if predicted_var_names is None: 

197 predicted_var_names = eval_data.predicted_var_names 

198 if self.params.returnTrainedModels: 

199 trained_models.append(model_to_fit) 

200 for predictedVarName in predicted_var_names: 

201 log.info(f"Evaluation result for {predictedVarName}, fold {i}/{len(self.modelEvaluators)}: " 

202 f"{eval_data.get_eval_stats(predicted_var_name=predictedVarName)}") 

203 eval_data_list.append(eval_data) 

204 test_indices_list.append(evaluator.test_data.outputs.index) 

205 crossval_data = self._create_result_data(trained_models, eval_data_list, test_indices_list, predicted_var_names) 

206 if tracking_context.is_enabled(): 

207 crossval_data.track_metrics(tracking_context) 

208 return crossval_data 

209 

210 def _compute_metrics(self, model: VectorModel, **kwargs): 

211 return self._compute_metrics_for_var_name(model, None) 

212 

213 def _compute_metrics_for_var_name(self, model, predicted_var_name: Optional[str]): 

214 data = self.eval_model(model) 

215 return data.get_eval_stats_collection(predicted_var_name=predicted_var_name).agg_metrics_dict() 

216 

217 def create_metrics_dict_provider(self, predicted_var_name: Optional[str]) -> MetricsDictProvider: 

218 """ 

219 Creates a metrics dictionary provider, e.g. for use in hyperparameter optimisation 

220 

221 :param predicted_var_name: the name of the predicted variable for which to obtain evaluation metrics; may be None only 

222 if the model outputs but a single predicted variable 

223 :return: a metrics dictionary provider instance for the given variable 

224 """ 

225 return MetricsDictProviderFromFunction(functools.partial(self._compute_metrics_for_var_name, predictedVarName=predicted_var_name)) 

226 

227 

228class VectorRegressionModelCrossValidationData(VectorModelCrossValidationData[VectorRegressionModel, VectorRegressionModelEvaluationData, 

229 RegressionEvalStats, RegressionEvalStatsCollection]): 

230 def _create_eval_stats_collection(self, l: List[RegressionEvalStats]) -> RegressionEvalStatsCollection: 

231 return RegressionEvalStatsCollection(l) 

232 

233 

234class VectorRegressionModelCrossValidator(VectorModelCrossValidator[VectorRegressionModelCrossValidationData]): 

235 def _create_model_evaluator(self, training_data: InputOutputData, test_data: InputOutputData) -> VectorRegressionModelEvaluator: 

236 evaluator_params = RegressionEvaluatorParams.from_dict_or_instance(self.params.evaluatorParams) 

237 return VectorRegressionModelEvaluator(training_data, test_data=test_data, params=evaluator_params) 

238 

239 def _create_result_data(self, trained_models, eval_data_list, test_indices_list, predicted_var_names) \ 

240 -> VectorRegressionModelCrossValidationData: 

241 return VectorRegressionModelCrossValidationData(trained_models, eval_data_list, predicted_var_names, test_indices_list) 

242 

243 

244class VectorClassificationModelCrossValidationData(VectorModelCrossValidationData[VectorClassificationModel, 

245 VectorClassificationModelEvaluationData, ClassificationEvalStats, ClassificationEvalStatsCollection]): 

246 def _create_eval_stats_collection(self, l: List[ClassificationEvalStats]) -> ClassificationEvalStatsCollection: 

247 return ClassificationEvalStatsCollection(l) 

248 

249 

250class VectorClassificationModelCrossValidator(VectorModelCrossValidator[VectorClassificationModelCrossValidationData]): 

251 def _create_model_evaluator(self, training_data: InputOutputData, test_data: InputOutputData): 

252 evaluator_params = ClassificationEvaluatorParams.from_dict_or_instance(self.params.evaluatorParams) 

253 return VectorClassificationModelEvaluator(training_data, test_data=test_data, params=evaluator_params) 

254 

255 def _create_result_data(self, trained_models, eval_data_list, test_indices_list, predicted_var_names) \ 

256 -> VectorClassificationModelCrossValidationData: 

257 return VectorClassificationModelCrossValidationData(trained_models, eval_data_list, predicted_var_names, test_indices_list)