Coverage for src/sensai/geoanalytics/geopandas/geometry.py: 31%
36 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
1import logging
2import numpy as np
3from itertools import combinations
4from scipy.spatial.distance import euclidean
5from scipy.spatial.qhull import Delaunay
6from shapely.geometry import MultiLineString, Polygon
7from shapely.ops import polygonize, unary_union
9from .coordinates import extract_coordinates_array, TCoordinates
10from .graph import delaunay_graph
12log = logging.getLogger(__name__)
15# after already having implemented this, I found the following package: https://github.com/bellockk/alphashape
16# It will compute the same polygons (I have verified it). It also contains an optimizer for alpha, which is, however,
17# extremely slow and therefore unusable in most practical applications.
18def alpha_shape(coordinates: TCoordinates, alpha=0.5):
19 """
20 Compute the `alpha shape`_ of a set of points. Based on `this implementation`_. In contrast to the standard
21 definition of the parameter alpha here we normalize it by the mean edge size of the cluster. This results in
22 similar "concavity properties" of the resulting shapes for different coordinate sets and a fixed alpha.
24 .. _this implementation: https://sgillies.net/2012/10/13/the-fading-shape-of-alpha.html
25 .. _alpha shape: https://en.wikipedia.org/wiki/Alpha_shape
27 :param coordinates: a suitable iterable of 2-dimensional coordinates
28 :param alpha: alpha value to influence the gooeyness of the border. Larger numbers
29 don't fall inward as much as smaller numbers.
30 :return: a shapely Polygon
31 """
32 coordinates = extract_coordinates_array(coordinates)
34 edge_index_pairs = set()
35 edge_vertex_pairs = []
36 graph = delaunay_graph(coordinates)
37 mean_edge_size = graph.size(weight="weight") / graph.number_of_edges()
39 def add_edge(edge_index_pair, edge_vertex_pair):
40 """
41 Add a line between the i-th and j-th points,
42 if not in the list already
43 """
44 edge_index_pair = tuple(sorted(edge_index_pair))
45 if edge_index_pair in edge_index_pairs:
46 # already added
47 return
48 edge_index_pairs.add(edge_index_pair)
49 edge_vertex_pairs.append(edge_vertex_pair)
51 tri = Delaunay(coordinates)
52 for simplex in tri.simplices:
53 vertices = tri.points[simplex]
54 area = Polygon(vertices).area
55 edges = combinations(vertices, 2)
56 product_edges_lengths = 1
57 for vertex_1, vertex_2 in edges:
58 product_edges_lengths *= euclidean(vertex_1, vertex_2)
59 # this is the radius of the circumscribed circle of the triangle
60 # see https://en.wikipedia.org/wiki/Circumscribed_circle#Triangles
61 circum_r = product_edges_lengths / (4.0 * area)
63 if circum_r < mean_edge_size/alpha:
64 for index_pair in combinations(simplex, 2):
65 add_edge(index_pair, tri.points[np.array(index_pair)])
67 remaining_edges = MultiLineString(edge_vertex_pairs)
69 return unary_union(list(polygonize(remaining_edges)))