Coverage for src/sensai/geoanalytics/geopandas/coordinate_clustering.py: 46%
70 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
1import logging
2from typing import Callable, Union, Iterable
4import geopandas as gp
5import numpy as np
6import pandas as pd
7from shapely.geometry import MultiPoint
9from .coordinates import validate_coordinates, extract_coordinates_array, TCoordinates, GeoDataFrameWrapper
10from ...clustering import SkLearnEuclideanClusterer
11from ...clustering.clustering_base import EuclideanClusterer
12from ...clustering.sklearn_clustering import SkLearnClustererProtocol
13from ...util.cache import LoadSaveInterface
14from ...util.profiling import timed
16log = logging.getLogger(__name__)
19class CoordinateEuclideanClusterer(EuclideanClusterer, GeoDataFrameWrapper):
20 """
21 Wrapper around a clustering model. This class adds additional, geospatial-specific features to the provided
22 clusterer
24 :param clusterer: an instance of ClusteringModel
25 """
26 def __init__(self, clusterer: EuclideanClusterer):
27 self.clusterer = clusterer
28 super().__init__(noise_label=clusterer.noiseLabel,
29 max_cluster_size=clusterer.maxClusterSize, min_cluster_size=clusterer.minClusterSize)
31 class Cluster(EuclideanClusterer.Cluster, GeoDataFrameWrapper, LoadSaveInterface):
32 """
33 Wrapper around a coordinates array
35 :param coordinates:
36 :param identifier:
37 """
39 def __init__(self, coordinates: np.ndarray, identifier: Union[str, int]):
40 validate_coordinates(coordinates)
41 super().__init__(coordinates, identifier)
43 def to_geodf(self, crs='epsg:3857'):
44 """
45 Export the cluster as a GeoDataFrame of length 1 with the cluster as an instance of
46 MultiPoint and the identifier as index.
48 :param crs: projection. By default pseudo-mercator
49 :return: GeoDataFrame
50 """
51 gdf = gp.GeoDataFrame({"geometry": [self.as_multipoint()]}, index=[self.identifier])
52 gdf.index.name = "identifier"
53 gdf.crs = crs
54 return gdf
56 def as_multipoint(self):
57 """
58 :return: The cluster's coordinates as a MultiPoint object
59 """
60 return MultiPoint(self.datapoints)
62 @classmethod
63 def load(cls, path):
64 """
65 Instantiate from a geopandas readable file containing a single row with an identifier and an instance
66 of MultiPoint
68 :param path:
69 :return: instance of CoordinateCluster
70 """
71 log.info(f"Loading instance of {cls.__name__} from {path}")
72 gdf = gp.read_file(path)
73 if len(gdf) != 1:
74 raise Exception(f"Expected {path} to contain a single row, instead got {len(gdf)}")
75 identifier, multipoint = gdf.identifier.values[0], gdf.geometry.values[0]
76 return cls(np.array([[p.x, p.y] for p in multipoint]), identifier)
78 def save(self, path, crs="EPSG:3857"):
79 """
80 Saves the cluster's coordinates as shapefile
82 :param crs:
83 :param path:
84 :return:
85 """
86 log.info(f"Saving instance of {self.__class__.__name__} as shapefile to {path}")
87 self.to_geodf(crs).to_file(path, index=True)
89 def _compute_labels(self, x: np.ndarray) -> np.ndarray:
90 validate_coordinates(x)
91 return self.clusterer._compute_labels(x)
93 def fit(self, coordinates: TCoordinates):
94 """
95 Fitting to coordinates from a numpy array, a MultiPoint object or a GeoDataFrame with one Point per row
97 :param coordinates:
98 :return:
99 """
100 coordinates = extract_coordinates_array(coordinates)
101 super().fit(coordinates)
103 @timed
104 def to_geodf(self, condition: Callable[[Cluster], bool] = None, crs='epsg:3857',
105 include_noise=False) -> gp.GeoDataFrame:
106 """
107 GeoDataFrame containing all clusters found by the model.
108 It is a concatenation of GeoDataFrames of individual clusters
110 :param condition: if provided, only clusters fulfilling the condition will be included
111 :param crs: projection. By default pseudo-mercator
112 :param include_noise:
113 :return: GeoDataFrame with all clusters indexed by their identifier
114 """
115 geodf = gp.GeoDataFrame()
116 geodf.crs = crs
117 for cluster in self.clusters(condition):
118 geodf = pd.concat((geodf, cluster.to_geodf(crs=crs)))
119 if include_noise:
120 geodf = pd.concat((geodf, self.noise_cluster().to_geodf(crs=crs)))
121 return geodf
123 def plot(self, include_noise=False, condition=None, **kwargs):
124 """
125 Plots the resulting clusters with random coloring
127 :param include_noise: Whether to include the noise cluster
128 :param condition: If provided, only clusters fulfilling this condition will be included
129 :param kwargs: passed to GeoDataFrame.plot
130 :return:
131 """
132 geodf = self.to_geodf(condition=condition, include_noise=include_noise)
133 geodf["color"] = np.random.random(len(geodf))
134 if include_noise:
135 geodf.loc[self.noiseLabel, "color"] = 0
136 geodf.plot(column="color", **kwargs)
138 # the overriding of the following methods is only necessary for getting the type annotations right
139 # if mypy ever permits annotating nested classes correctly, these methods can be removed
140 def get_cluster(self, cluster_id: int) -> Cluster:
141 return super().get_cluster(cluster_id)
143 def noise_cluster(self) -> Cluster:
144 return super().noise_cluster()
146 def clusters(self, condition: Callable[[Cluster], bool] = None) -> Iterable[Cluster]:
147 return super().clusters(condition=condition)
150class SkLearnCoordinateClustering(CoordinateEuclideanClusterer):
151 """
152 Wrapper around a sklearn clusterer. This class adds additional features like relabelling and convenient methods
153 for handling geospatial data
155 :param clusterer: a clusterer object compatible the sklearn API
156 :param noise_label: label that is associated with the noise cluster or None
157 :param min_cluster_size: if not None, clusters below this size will be labeled as noise
158 :param max_cluster_size: if not None, clusters above this size will be labeled as noise
159 """
160 def __init__(self, clusterer: SkLearnClustererProtocol, noise_label=-1,
161 min_cluster_size: int = None, max_cluster_size: int = None):
162 clusterer = SkLearnEuclideanClusterer(clusterer, noise_label=noise_label,
163 min_cluster_size=min_cluster_size, max_cluster_size=max_cluster_size)
164 super().__init__(clusterer)