Coverage for src/sensai/util/aggregation.py: 44%
48 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-11-29 18:29 +0000
1import collections
2from typing import Hashable, Dict, Optional
4from .string import ToStringMixin
7class RelativeFrequencyCounter(ToStringMixin):
8 """
9 Counts the absolute and relative frequency of an event
10 """
11 def __init__(self):
12 self.num_total = 0
13 self.num_relevant = 0
15 def count(self, is_relevant_event) -> None:
16 """
17 Adds to the count.
18 The nominator is incremented only if we are counting a relevant event.
19 The denominator is always incremented.
21 :param is_relevant_event: whether we are counting a relevant event
22 """
23 self.num_total += 1
24 if is_relevant_event:
25 self.num_relevant += 1
27 def _tostring_object_info(self):
28 info = f"{self.num_relevant}/{self.num_total}"
29 if self.num_total > 0:
30 info += f", {100 * self.num_relevant / self.num_total:.2f}%"
31 return info
33 def add(self, relative_frequency_counter: "RelativeFrequencyCounter") -> None:
34 """
35 Adds the counts of the given counter to this object
37 :param relative_frequency_counter: the counter whose data to add
38 """
39 self.num_total += relative_frequency_counter.num_total
40 self.num_relevant += relative_frequency_counter.num_relevant
42 def get_relative_frequency(self) -> Optional[float]:
43 """
44 :return: the relative frequency (between 0 and 1) or None if nothing was counted (0 events considered)
45 """
46 if self.num_total == 0:
47 return None
48 return self.num_relevant / self.num_total
51class DistributionCounter(ToStringMixin):
52 """
53 Supports the counting of the frequencies with which (mutually exclusive) events occur
54 """
55 def __init__(self):
56 self.counts = collections.defaultdict(self._zero)
57 self.total_count = 0
59 @staticmethod
60 def _zero():
61 return 0
63 def count(self, event: Hashable) -> None:
64 """
65 Increments the count of the given event
67 :param event: the event/key whose count to increment, which must be hashable
68 """
69 self.total_count += 1
70 self.counts[event] += 1
72 def get_distribution(self) -> Dict[Hashable, float]:
73 """
74 :return: a dictionary mapping events (as previously passed to count) to their relative frequencies
75 """
76 return {k: v/self.total_count for k, v in self.counts.items()}
78 def _tostring_object_info(self):
79 return ", ".join([f"{str(k)}: {v} ({v/self.total_count:.3f})" for k, v in self.counts.items()])
82class WeightedMean(ToStringMixin):
83 """
84 Computes a weighted mean of values
85 """
86 def __init__(self):
87 self.weighted_value_sum = 0
88 self.weight_sum = 0
90 def _tostring_object_info(self) -> str:
91 return f"{self.weighted_value_sum / self.weight_sum}"
93 def add(self, value, weight=1) -> None:
94 """
95 Adds the given value with the given weight to the calculation
97 :param value: the value
98 :param weight: the weight with which to consider the value
99 """
100 self.weighted_value_sum += value * weight
101 self.weight_sum += weight
103 def get_weighted_mean(self):
104 """
105 :return: the weighted mean of all values that have been added
106 """
107 return self.weighted_value_sum / self.weight_sum